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ABSTRACT

or some applications, it is desirable to have an antenna which can

adaptively form antenna pattern *nulls in the directions of a collection of

interference sources. These nulls are generally required to be below some

specified level of directive gain over the entire system bandwidth. Typically

the nulls are formed by adaptively weighting each output of an N-port antenna,

such as an N-element array. For large arrays operating over wide percentage

bandwidths, some sort of frequency compensation is required at each output

port to accomplish broadband nulling. One technique commonly used is to employ

a Ptappedy delay line at each element output, with controllable weights

(frequency independent) at the output of each tap. The objective of this report

is to develop some insight into the way in which delay line compensation leads

to improved performance, to develop some quantitative estimates of how perfor-

mance varies with antenna and delay line parameters, and to develop some tools

useful in the performance evaluation of frequency dependent weighting.

Practical considerations dictate that only a minimum number of taps/

element be utilized. A primary consideration is to minimize the number of taps

required for a specific system performance. With this objective in mind, we

develop an analytic solution characterizing the two element array, employing

a two-tap delay line with each element. This provides valuable insight into

the mechanism of delay line compensation. Results for this simple case will

then be extended to the N-element planar atray using Nt taps/element. That

tap spacing which optimizes the array performance from the viewpoint of

providing wideband nulls on sources incident on the array from locations

arbitrarily specified over the antenna field of view is developed, and applied

to numerous types of array configurations. The composite performance of nine

specific array configurations is used to estimate the number of taps and tap

spacing which would be required for an arbitrary array configuration, as a

function of the array and delay line parameters Aym -2 ,

t| and Nt. where FBW is the fractional bandwidth (lO0*FBW - percentage nulling

bandwidth) 0m is the maximum scan angle off broadside, 0 the tap spacing

. iii



(in degrees relative to the center-band frequency) D is the maximum aperture

dimension, and Nt the number of taps. The implications of using an Applebaum-

Howells type of adaptive processor to determine the delay-line output weighting,

and the algorithm effects on performance, are also developed.
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I. INTRODUCTION

For some applications, it is desirable to have an antenna which can adap-

tively form antenna pattern minima, or "nulls" in the direction of a collection

of interference sources. These minima are generally required to be below some

specified level of directive gain over the entire system bandwidth. When this

bandwidth is quite large (for example, when bandspreading is used in the modu-

lation format of a communications signal), the level of nulling which can be

achieved becomes dependent on the aperture size (in wavelengths), the antenna

field of view (FOV), and the RF fractional bandwidth (FBW). Typically, such

nulls are formed by adaptively weighting each of the outputs of an N-port

antenna such as an N-element array, or N-beam multibeam antenna, and then

summing these weighted outputs so as to form minima in the radiation pattern in

the directions of the interference sources, and relative maxima in the directions

of the desired users of the system. For large antennas operating over wide

percentage bandwidths, some sort of frequency compensation is required at each

antenna output port to accomplish broadband nulling. One technique commonly

used is a frequency dependent weight consisting of a "tapped" delay line with

controllable weights (frequency independent) at the output of each tap, and

the weighted tap outputs summed. The net effect is to adaptively synthesize

the "optimum" frequency-dependent weight at each element. Several papers have
(1,2,3)addressed this problem ''. The objective of this report is to develop some

additional insight into the way in which delay line compensation leads to

improved performance, to develop some quantitative estimates of how performance

varies with the antenna and delay line parameters, and to develop some tools

useful in the performance evaluation of frequency dependent weighting.

Practical considerations dictate that only the minimum number of taps per

element required to achieve the desired performance be utilized. For an N-
element array using Nt taps (Nt=l corresponds to frequency independent weights

with no delay lines), then N.Nt controllable weights are required. A primary

consideration is to minimize Nt required for a specific system performance.

With this goal in mind, it is useful to consider the performance characteristics

~,1~~t
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of an N-element array using frequency independent weighting, so that the need

for incorporating the more complex delay line processor can be quantified.

Fig. 1 illustrates an estimate of the cancellation performance, using frequency

independent weighting, for an N-element linear array for the cases N=2, 7 and

17. Each array case forms N-1 nulls on N-1 interference sources separated

greater than a half-power beamwidth (HPBW) from its neighbor. For our puposes,

the cancellation C plotted in Fig. 1 is defined to be the quotient of the

interference to thermal noise ratio at the array output after nulling to that

before nulling (see Eqs. 38 and 39 of the text), when the interference is

assumed to consist of white noise over the bandwidth BW. The quiescent radia-

tion pattern of the array is assumed to be "earth coverage" (i.e., a single

array element is used as the reference element, where the element pattern

covers the earth FOV with applications pertaining to an uplink to a satellite

at geosynchronous orbit). For convenience we define the fractional bandwidth,

FBW, as BW/fo, where f0 is the operating frequency and BW is the nulling band-

width (in hertz). The development leading up to Fig. 1 is presented in Appen-

dix A. Referring to the figure, it is convenient to characterize the array

performance according to the variables D/X, sinO and FBW, where D/X denotesm

the aperture diameter in wavelengths, and 0 is the maximum scan angle defining

the field of view over which the array must operate. The cancellation degrades

rapidly as any of the parameters D/X, 0 or FBW is increased. More precisely
F)2, D

C a (Aym  FBW) , where Aym = 2w • - • sinO . If the desired cancellation
mM

performance is specified, Fig. 1 can be used to estimate the corresponding

maximum allowable value of Ay consistent with this performance specification.

If system requirements dictate that a value of AYm greater than this maximum is

required (for example, the minimum allowable user-interference separation

dictates the choice of D/X), frequency dependent weighting requiring Nt > I

must be used. As an example of the use of Fig. 1, if we desire C : -30 dB,

then AYM.FBW must be less than 0.25 if frequency independent weights are used.

For the geosynchronous satellite uplink geometry, 0 is fixed at approximatelym
90. D/X is determined by the user-interference resolution required. The

tolerable bandwidth with frequency independent weighting is then specified by

2
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Fig. 1. Cancellation vs 2w -D sin 0 *FBW for an N-element,
equi-spaced linear array using irequency independent weighting.
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the requirement AYm FBW 0.25. Results similar to Fig. 1 specifying the

performance of the delay line processor for use with specific array configu-

rations will be presented in Sections III and IV.

Observe from Fig. 1 that the cancellation estimates are relatively inde-

pendent of the number of array elements used. It will be seen later that, in

fact, the estimates of Fig. 1 serve as an upper bound on the cancellation

performance of the more complex planar arrays. However, the general behavior

indicating C a (Aym • FBW)
2 remains valid. Only the constant of proportion-

ality changes with array configuration. It should be pointed out, however,

that this dependence is characteristic only of array antennas. For multiple

beam antennas (MBA's) employing beams formed using time-delayed techniques, it
2can be shown that C a FBW , and is relatively independent of D/A and 0 . Thism

results from the time-delayed nature of each of the beams. A detailed discus-

sion of the MBA bandwidth behavior is presented in Ref. 4. Because of these

basic differences between the MBA and the array antenna, the results charac-

terizing the array configurations treated in the following sections cannot be

directly extrapolated to the MBA.

In the following section, we will introduce several concepts which are

fundamental to obtaining a quantitative assessment of the performance of

adaptive antennas using a delay line processor. Direct assessment of the band-

with performance of an N-element antenna used in conjunction with an adaptive

processor is difficult unless the array is required to form N-1 independent

nulls. This is because the array possesses N-1 available degrees of freedom,

and forming less than N-1 nulls allows the processor to compensate for any

narrowband tendency inherent in the antenna by using the additional available

degrees of freedom to form wide-band nulls. However, this type of wide-band

null tends to be spatially broader than the corresponding narrowband case, so

that the spatial resolution of the array is compromised. When a tapped delay

1 ne is used to wide-band the array, the narrowband spatial resolution of the

array is preserved. To avoid this ambiguity, and to establish a basis for

comparing array performance with and without a delay line processor, we intro-

duce the concept of "orthogonal" sources. By definition, such sources use up a

4



complete degree of freedom per source to be nulled. Subjecting the array to

N-1 orthogonal interference sources necessarily requires all the available N-1

degrees of freedom of the array to be allocated to spatial nulling, with none

remaining for bandwidth compensation. The improvement in performance realized

using delay line processing compared to frequency independent weighting can

then be quantitatively assessed for this type of scenario.

A second useful concept offering insight into how delay line compensation

leads to improved performance is that of "optimum weighting". The set of

optimum weights, by definition, has the precise frequency variation required to

perfectly null all the N-1 orthogonal interference sources over the entire

* bandwidth of interest. The frequency dependence of these optimum weights can

readily be determined. The function of the delay line processor is to synthe-

size an effective weight variation with frequency which approximates this

optimum weight variation. The degree to which this is possible depends on the

delay line parameters i.e., the tap spacing and the number of taps. A novel

graphical presentation illustrating this synthesis of the optimum weights via

delay lines will be developed in Section II and used throughout in evaluating

the characteristics of specific antenna configurations.

The performance of an N-element adapative array is strongly dependent on

the control algorithm used in the delay line processor. In Section III we

present an analysis of this dependence assuming that an Applebaum-Howells type

adaptive feedback processor (5 ) controls the weights at the output of each tap
of the delay line. For this type of processor, the quiescent radiation pattern

of the array is governed by "beam-steering" controls applied to the control

loops. Upon adaption, the weights are set to a value which reduces the radia-

tion pattern in the direction of the interference sources to a minimum level

dependent on the loop gain (or processor dynamic range), while simultaneously

yielding the best rms approximation to the quiescent radiation pattern in

directions away from the interference. Choice of loop gain (i.e., the effec-

tive power level of the interference sensed by the processor) determines the

tradeoff between depth of null and rms pattern error of the adapted pattern

5



relative to the quiescent pattern. The dependence of the array performance on

processor parameters will be evaluated for the two-element array using two

taps/element. For this simple case, detailed analytical solutions can be

obtained, providing a physical feeling for how delay line compensation improves

the array nulling bandwidth. Proper choice of the steering vector required to

keep the array from "turning itself off" will also be developed. It will be

shown that only in the limit of very large loop gain is the full potential of

the delay line processor realized.

Finally, in Section IV, the performance of specific N-element linear and

planar arrays operating over a fixed FOV will be quantified as a function of

Aym, the tap spacing, number of taps and the nulling bandwidth for processors

having very large loop gain. In this limit, array performance becomes indepen-

dent of the control algorithm, and only dependent on the array and delay line

parameters. Of prime interest will be to characterize how the cancellation

over FBW improves as the number of taps increases, so that only the minimum

number of taps might be used for specific system applications. The composite

results determined from numerous array configurations will be used to estimate

a specific value of Nt required to obtain a specified cancellation performance

for an arbitrary array configuration. These results are summarized in

Figs. 24a, b and c of the text.

I
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II. PERFORMANCE EVALUATION CONCEPTS

A. The Concept of Orthogonal Interference Sources

As discussed in the previous section, it is useful to introduce the con-

cept of orthogonal interference sources. By definition, such sources use up a

complete degree of freedom available to the array per source to be nulled.

Subjecting an N-element array to N-1 orthogonal sources necessarily requires

all the available N-1 degrees of freedom of the array to be allocated to spa-

tial nulling, with none remaining for bandwidth compensation. Mathematically,

this condition can be stated as follows:
9

Define the source direction vector u, whose components are the outputs

of each element of the array when a narrowband signal of unit amplitude from

direction 0, is incident on the aperture, according to

+jk 0 R sinO(xkcos + Yksin)

(u)k e ,k=l, ..., N (1)

where k0 = 21/X w 0 /c, X is the wavelength, w0 the operating frequency,

c = 3x10 m/sec, D the diameter of the circle circumscribing the array, 0,

the angular coordinates specifying the source direction relative to array

broadside, and the xk, Yk are the normalized (relative to D/2) element place-

ment coordinates (Xk2 + yk4 1). Hence, when u is applied to the array

elements as a weight vector, then the array output response is maximum. (Note:

"'T denotes "complex conjugate transpose.") A set of orthogonal sources at

positions ui uj satisfies the orthogonal ty conditions

t U = NS i,j = 1, ..., N (2)iii 7-1 i,j

where 6 ,j denotes the Kronecker delta function (61,j  0 O, i 0 J; 6 i I,

i = j). Physically this occurs when the sources are sufficiently far apart so

that a separate null (other than a grating lobe null) is required for each.

At least one set of sources satisfying (2) can be found for most arrays of

"' -7



interest, and a set which at least approximately satisfies (2) can be found

for all arrays.

Consider then J narrowband incoherent interference sources emanating from

the directions O., i J-I, ..., J. The correlation matrix characterizing the

array element voltage outputs, E k, is given by

S=  E Eq* = R 1 G U + ... + R G u u (3)

t~h
where G is the element gain, R. is the interference power level of the j-e

source (relative to thermal noise referred to the element input) incident on

the array aperture, E { • } denotes the statistical expected value over the

interference noise processes and I is the identity matrix. The N-1 degrees of

freedom of the array are characterized by the N eigenvalues, sl, ...I sN, of

the N x N matrix R . For J sources, J of the N eigenvalues of R will be
=A =A

greater than unity, while the remaining N-J will be 1. However, if several of

the interference sources are not orthogonal, i.e., they are in close proximity

(relative to the array half-power beamwidth, HPBW), then not all of the Sl,

..., sj will be significantly greater than 1. Otherwise said, the array in

this case is not using a single degree of freedom per interference source

present in order to accomplish the nulling. If the sources are orthogonal as

defined in (2), however, all of the al, ..., sj must be significant, and in

fact this condition leads to eigenvalues sI 
I RI, ... , sj = Rj. Equation (2)

defines the conditions for orthogonal sources, and the presence of N-i such

sources necessarily uses up all of the available N-1 degrees of freedom of the

array. (We note that if the array element spacing is so large that grating

lobes appear over the FOV, then the number of possible positions for the u to
-j

satisfy Eq. (2) is multiplied.)

The concept of orthogonal sources can be quite useful in characterizing

the performance of an array when operating over a wide bandwidth. Consider the

presence of J orthogonal sources operating over a fractional bandwidth FBW.

The correlation matrix for incoherent white noise sources is then given by

8



t t

EA G R, < > + + Ge R~ U (4)

where the bracket <* > denotes the integral

l+FBW/2

< = B' ) dw (5)

l-FBW/2

and w = W/W0 denotes the normalized frequency. Because of this frequency

average, J sources now lead to the presence of an additional group of eigen-

values sJ~l, sJ+2, ... sJ+L which arise due to bandwidth (see Ref. 6 for a

more detailed discussion of this phenomenon). If FBW is large, the sj+1,

... sJ+L become significant and forming a wideband null on the sources uses up

additional array degrees of freedom. This has two possible effects: if

J+L < N, then the array will form broadband nulls, but these will also tend to

be spatially broader than narrowband nulls and so will yield reduced antenna

gain to the desired users in close proximity to the interference sources; if

J+L > N, the array cannot null all the sources. Both effects are to be avoided,

if possible, as they result in non-optimum array performance. The case

J+L < N is difficult to evaluate quantitatively, since the resulting loss in

gain to a user signal which is tolerable is dependent on the system link

margin parameters and the locations of the user and interference sources.

However, if we consider the scenario consisting of N-1 equal, orthogonal inter-

ference sources, then sN-l>> sN and the resultant eigenvalue sN is directly

indicative of the array bandwidth characteristics. Hence direct examination

of s, treated as a function of FBW, offers a measure of the nulling bandwidth

L 'potential of a particular antenna configuration.

B. The Tapped Delay Line and the Applebaum-Howells Processor

F Fig. 2 illustrates the general topology of a tapped delay line, employing

Nt taps/element, used in conjunction with an Applebaum-Howells type adaptive

"- 9
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Fig. 2. Topology of happed delay line weighting scheme
illustrated for the k- element of an N-element array, and using
and Applebaum-Howells type adaptive processor.
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thprocessor. For simplicity only the schematic pertaining to the k- element

is shown in the figure. We use the following notation: the subscript "k"

denotes the array element under consideration and the subscript "n" the loca-

tion along the delay line. 00 denotes the tap spacing in degrees - i.e.,

0 = wOT, where T is the time delay between taps. The frequency response

of the k-:array element is denoted as Ek(w) and the frequency response of the

output of the n tap in the k - channel as E,n(W), Since considerable loss

may be encountered in the power division to the Nt taps, it is desirable to

amplify before the delay line input. This is indicated in Fig. 2, depicting an
2

* amplifier at the output of each array element having thermal noise n0 . As a

consequence of amplifying before the power split, the resultant thermal noise

at the output of each tap in a given channel is correlated, as contrasted to

the more familiar situation, without frequency compensation, in which the

thermal noise is uncorrelated between channels. Because of this noise corre-

lation effect, and because the algorithm chosen is one that tends to minimize

received power, it is possible for the adaptive array to "turn itself off" if

adequate constraints are not imposed on the weight control algorithm. For the

Applebaum-Howells algorithm, these constraints are imposed via the beam-steering

voltage V, indicated in Fig. 2, which controls the weight in the absence of

interference sources -- i.e., V specifies the quiescent radiation pattern of

the array. The proper choice of V will be developed in the next sections, and

will be seen to have a substantial effect on the nulling performance.

The outputs of each of the N • N terminals of the array define an N • N
t t

x N • N correlation matrix R which governs the performance of the array. Once
tM

R is determined, the weights can be set according to the chosen adaptive
(5)algorithm

A- + -l • V (6)

where p is the effective processor gain. P is a variable, dependent on hard-

ware considerations, and significantly affects the processor performance.

Implicit in Eq. (6) is the assumption that N Nt beam steering voltages

11



characterized by the vector V are applied to each weight at the output of each

tap, and that N N Nt adaptively controllable complex weights are used. To

develop the expression for =, consider the output of the 1kth tap behind the
thk71 element:

E 1 -J(n-l) 0o WEkn (w) - Ek (w) e (7)

where Fk(w) is the array element output response. The contribution to E.,n(w)

from thermal noise results in a noise covariance matrix given by

no0 -J (n-m) 0 w
6k,q nt < e > (8)

The overall correlation matrix R can be written as

* -j (n-m)€ 0w
S< E { Ek(w) Eq*(W) e }> + R (9)

Ntq (9)

For J uncorrelated white-noise interference sources, and for an array antenna

configuration, this expression for R reduces to

J

R + R (10)=j =n
J=1

where

G+FBW/2RR (kqnm) GN e  F1W f +J(yk'j-Tq'j )w e-J(n-re)CoWw (11)
R(k,q,n,m) e q e 0  dw (1

=jN FBW f-11I -FBW/2

12



koD
where qkJ - sinOj(Xk cOs j + Yk sin*o) denotes the center frequency phase

shift at the kth element due to the jth source. If R is normalized relative to2

nO , then the resultant expression for R can be written as

J1-J (n-m)O 0Ow

R(k,q,n,m) = Rj(k,q,n,m) + 1 6k < e > (12)

This general expression for R will be used throughout the text to develop the

specific properties of the adaptive array with delay line processing.

A careful examination of the expression for R in Eq. (12) and the adapted

solution for the weights, Eq. (6), will indicate several parameters affecting

the adaptive array performance. The most obvious are the tap spacing and number

of taps per element. In order to simplify a tradeoff study characterizing the

"optimum" tap spacing, we have assumed a uniform spacing between taps. Clearly

for some scenarios, this is a non-optimum choice. For example, for a 3-element

array with two sources incident at specified angles of incidence it can be

shown that non-uniform tap-spacing gives the best performance (see Section IV).

However, it might be argued that a fixed set of delay lines must be designed

to handle arbitrary angles of incidence over the antenna FOV, in which case

some angles of incidence necessarily yield better cancellation performance

than others. Thus, optimum performance should be defined relative to, perhaps,

the average cancellation performance over this range of angles. In this case,

it would appear that the assumption of uniform spacing between taps is not so

restrictive.

The algorithm defined by Eq. (6) defining the adapted weights is power

level dependent as a consequence of the effective processor gain P. Define

*iand s to be the eigenvectors and eigenvalues of R, respectively. Then

Eq. (6) can be expressed in the form

N'N
l+ si 

(13)
1+1 i=

13
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Eq. (13) specifying the adapted weight vector A is similar in form to that for

the more conventional Applebaum-Howells processor without tapped delay lines.

Note that because of the term 1/(l+usi), the eigenvectors corresponding to the

smaller eigenvalues are weighted more heavily, and must contain the information

required to null the interference sources. The detailed characteristics of

these eigenvectors corresponding to the lower eigenvalues will be developed in

the next section. However, it is clear from Eq. (13) that the relative contri-

bution of the eigenvectors corresponding to the smaller eigenvalues to the

adapted solution for A is dependent on the processor loop gain v; i.e., only

eigenvalues si such that psi >!1 are sensed by the processor. Define sM X to

be the maximum eigenvalue of R. Then it can be shown that s,, W N G R for
e j

a single source of relative power level R incident on the array. Consequently

S MAX determines the dynamic range of incident power levels which will be sensed

by the processor. Hence the performance of the delay line processor and the

choice of "optimum" delay line parameters can be expected to be power level

dependent. Only in the limit vsMAx>>l can we determine optimum delay line

parameters independent of incident power levels.

C. Optimum Weighting vs Delay Line Synthesized Weighting

In order to gain some insight as to how frequency compensation obtained

using tapped delay lines improves the array performance, it is useful to

define what we might refer to as an optimum weight variation with frequency,

and then examine how the frequency variation of the delay line synthesized

weight compares to this optimum. As illustrated in Fig. 2, Ek(w) denotes
ththe frequency response transfer function of the k- antenna port, before delay

line processing. Let us define the OPTIMUM weighting, AOk(w), k1l, ..., N,

such that when AOk(w) is applied as weight to the kth antenna port output, then

the interference sources are ideally nulled over the entire band defined by

FBW. The output V0 (w) as a function of w is given by

N

V0 (w) I AOk (w) Ek(w) (14)

kul

- ~14

I I I' i:vi ' : , - - .. . . . . . . . ., .



Noting Eq. (14), the optimum weights AOk(w) can readily be determined as

follows: define the "narrowband" correlation matrix, %(w), to be the N x N

matrix at the array element outputs when J incoherent narrowband interference

sources at frequency w are incident on the array, and w is considered a para-

meter over the interval 1 - FBW/2 1 w < 1 + FBW/2. Then Ak(w) are given by

k (w) I I+ PR. (w)] -l*V4 (15)

where V is an Nxl equivalent steering vector. When considered as a function of
--N

w, A (w) minimizes the array output power over the entire nulling band defined

by FBW. For comparison, consider the delay line synthesized weights obtained

using Nt taps/element for an N-element array. From Fig. 2, the output voltage

V0 (w) is given by
N (NtN , -J (n-l)¢o0W

V0 (w) = An e E k(w) (16)

k=l ln=l

The bracketed term in (16) corresponds to the frequency dependent weight
th

synthesized by the delay line in the k- channel. We define, then,

Nt +J (n-l)$0w

n1l

to be this frequency dependent delay line synthesized weight. Eq. (17) defines

a truncated Fourier series expansion for each weight A.k(w) over the interval

1 - FBW/2, w < 1 + FBW/2. Ideally, Ak(w) can be made to approximate AOk(w)

as well as desired by choosing 0 appropriately and letting Nt be arbitrarily

large. It is well known from the theory of such series expansions that in

order to be able to approximate an arbitrary function over this band,

< 27/FBW. Note that if we choose 0 2w/FBW, then Ak(w) is periodic with

period FBW. Consequently any Fourier sum approximating AOk(w) must exhibit the

familiar Gibb's phenomenon ripple at the ends of the band, and leads to oscil-

lating approximations to AOk(w) within the band. Typically the optimum weights

15



Aok(w) required depend only on the array dimensions (or array environment, if

multipath arising from boundaries external to the array is present) and are

generally slowly varying relative to 2w/FBW. Consequently it is normally

advantageous to choose €0 0 27/FBW. As long as @0 0 2w/FBW, it is clear from

the theory of Fourier series expansions that the approximation of Ak(k) to

Aok(w) will improve as the number of taps increases. It is the intention of

the following sections to quantify this improvement with the objective of using

only the minimum number of taps for a specified cancellation performance.

To obtain a feel for how well the delay-line synthesized weights defined

by Eq. (17) approximate the ideal weights, A(w), consider an N-element array

and a single interference source incident from an angle 0,0. Assume V f
[1, 0, A., 0] corresponding to turning on only a single element (i.e., earth

coverage for an array on a satellite). Choose the array phase reference

relative to y1; then

A01 (w) = 1

A k(w) = - -- , e , k=2, ...N (18)

By comparing Eqs. (17) and (18), several couments concerning the choice of

0 can be made:

1) Note that using Nt 
f two taps/element, no choice of 0 in Eq. (17)

will yield exact synthesis of (18) unless N=2. In this case, for the two

element array, let 0 = y2-Y = AY; then the weighting A1 ,2 - 0, A2, 1 -0

results in perfect cancellation over FBW. If the angle of incidence defined

by e,O is allowed to be variable over the FOV, perfect cancellation of the

interference waveform will be achieved only for selected angles of incidence

for a fixed 0"

2) For N-elements, choosing Nt=N will not necessarily yield exact

synthesis of the optimum weights using uniform tap spacing. Conversely, if

a different tap-spacing Ok = Y-Y is used for each element, then a total of

16
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N tN taps are sufficient to perfectly cancel the interference over the band
for selected angles of incidence.

3) Since any angle of incidence over the FOV is assumed equally probable,

it is the average cancellation which can be achieved over this range of angles

which becomes important. In this case, the use of uniform tap-spacing does

not appear to be overly restrictive.

4) Referring to (17) and (18), an interesting graphical aid in visualizing

how the choice of 0 affects the synthesis of the optimum weights can be devel-

oped. Consider a polar plot (amplitude/phase) of Eqs. (17) and (18), where

for simplicity we consider only the case of 2 and 3 taps/element. Fig. 3a

illustrates the graphical synthesis of the AOk(w) using 2 taps/element, and

Fig. 3b using 3 taps/element. The optimum weight AOk(w) has a total phase

traversal of (yk-y I ) - FBW radians. For Akl and Ak,2 0 0, as would generally

be the case for a fixed *09 then, at best, the vector sum of the delay line

phasors can only approximate AOk(w). The two-element, two-tap special case,

with 0= y2-y1, becomes clear from Fig. 3a, in which case choosing Akl = 0

results in an exact synthesis of AOk(w). Fig. 3b for the three tap case

illustrates the added degree of freedom obtained by adding the additional delay

line. In both examples, *.0 has been chosen too large, and the figures show the

resultant too-rapid phase variation which would be obtained. This phase-

amplitude plot will be used in the later sections to illustrate the performance

of the delay line processor relative to optimum weighting for specific array

antennas.

17
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Fig. 3. Synthesis of the optimum weight Ao(w) using tapped
delay lines: (a) Amplitude/Phase plot using two taps/element,
(b) Three taps/element.
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III. THE TWO-ELEMENT ARRAY

The two-element array presents the simplest array antenna configuration

which can be used to achieve radiation pattern nulling. Though simple in

concept, a detailed analysis of its performance characteristics provides valu-

able insight into the mechanism of delay line frequency compensation. Prac-

tical considerations dictate that only the minimum number of taps required to

achieve the desired array performance be used. With this goal in mind, the

two-element, two-tap problem will be studied in some detail. For this simple

case, analytical solutions for the delay line synthesized weights can be

obtained together with analytical solutions for the optimum weights. In

comparing the two solutions, it will become clear that exact synthesis of the

optimum weights via two taps on a delay line is possible when the tap spacing

is matched to the wavefront angle of arrival. However, for the practical

case, this angle of arrival is not a priori known, so that this matched tap

spacing could not be used. In practice, a fixed delay line spacing must be

implemented to compensate for an arbitrary angle of arrival. For our purposes,

we define an "optimum" delay-line tap spacing relative to this latter crite-

rion. That is, the optimum delay-line tap spacing minimizes the average

cancellation as a function of signal wavefronts incident from anywhere over

the antenna FOV. Solutions for the optimum tap-spacing satisfying this crite-

rion will be obtained for the two-element array for two taps on the delay line,

and extrapolated to the N-element array employing a delay line with Nt taps

via physical considerations. It is also possible to obtain analytical solu-

tions for the eigenvectors and eigenvalues of the correlation matrix defined

at the tap outputs for the two-element, two-tap array. Knowledge of these

eigenvectors and eigenvalues allows a detailed examination of the adapted

weights to be made on the basis of Eq. (13). In particular, the dependence of

the array cancellation performance on processor dynamic range discussed in the

previous sections can be developed. Finally, by extending the two-tap results

to the more general Nt > 2, a quantitative assessment of the improvement in

cancellation realized by increasing the number of taps can be made.

19



In the following, we first develop the characteristics of the eigenvalues

and eigenvectors of R characterizing the performance of the two-element, two-

tap topology, and examine each respective eigenvector in some detail. As

might be expected, the eigenvector , corresponding to the lowest eigenvalue,

contains the basic information on how to form nulls with delay line compen-

sation. The transition of the adapted weight vector A defined in Eq. (13)

to the optimum weighting defined by is then considered as a function of

processor dynamic range, us MA. We show that as usMAX , A + to within a

constant factor. Finally, given the case us M X >> 1, we determine the choice

of 0 which maximizes the average interference cancellation for sources inci-

dent from anywhere over a fixed FOV.

A. Eigenvectors and Eigenvalues of R for a Two-Tap Delay Line

Consider the two-element, two tap topology illustrated in Fig. 4. For

convenience we define E e =GR- and AY = Y1 - Y2. The solution is simplified

considerably with little loss in generality if we ignore the effects of thermal

noise. For a single interference source incident on the array, the 4 x 4

correlation matrix characterizing the delay line outputs is given by (see Eqs.

11 and 12)

(2 )  + (Yk-Yq)W -j (n-m)4OW

R = (E)/2 < e e . (19)

where we have defined \,I = Yk and yi Yq" If the eigenvectors and eigen-
values of R 4 can be determined, then using Eq. (13) the complete solution

for the adapted weights, and other physically observable parameters, can be

obtained. An exact analytical solution for these four eigenvalues and eigen-

vectors is difficult. However, they can be estimated quite accurately using a

perturbation expansion of R on FBW.

To accomplish this, we expand the integrand of (19) about w-l. Define

!0 according to

20
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Fig. 4. Delay line topology and notation for the two-element,

two taps/element, delay compensated array.
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R B= (20)

Then Rcan be written in the series expansion
=4

R =g + AR + AR +AR ZR + &R=4 = =2 =4+ =6 0 = (21

2 4 6where AR is proportional to FBW , &R4 to FBW ,and &R to FBW .(Note, odd=2 =4=6
powers of FBW are not present since <Aw n> =0 when n is odd, where Aww-l.)

The eigenvalues and eigenvectors of R4 can be estimated by the expressions (
7 )

.=4

S 80 + -s* (22a)

i1 1,2,3,4

4

+ 2; 1 (e. to AR * ,O t' (22b)
ti -i, oS -s

S=1 1 1, ='o-~

j #i

where the s ' and e i o i=1, ... , 4 are the solutions to the unperturbed

problem, (i.e., the eigenvectors and eigenvalues of R ) and the sand

i-1, ... , 4 are the estimated eigenvalues and eigenvectors of R1. Note by the
6form of AR that these estimates are correct to the order of FBW . The analysis

leading up to the expression for the s i and e is long and tedious. The

procedure is outlined in Appendix B. The eigenvaluse take the form

2 2 2 2

s 2 E 2(FBW & -) (1 + ' 2 Wf )/24

(23)
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83 =7. 8 x 10 E0  (01 A) (FBW • A Y)

s4 1.6 x 10 E0 (FBW A y) ( 0/a 2 ) (1 - 0 /Ay )(1 + *0 2Ay

and the conjugate transpose of the normalized eigenvectors can be expressed as

el .1 [ +JAy JY N J(0o+ Y) ]
I = -1,e ,e ,

-j Yl-e- = e (1+ O/ti), -(1 - ,oly) e+JAY,+ e oJ/ Y
+-t 0  +j2 +,+ Y)] Ay

(-o/A y)e , -(l+0/A Y)e

e3t 21 -e - J A Y, 1, e 0 -e 01](24)

-4t = 22i [(1 - O/Ay)e-JA , (1 + 00oAy), -(1 + 0 /aY)

e , -(1 - 0/A Y)e N

Although Eqs. (23) and (24) are approximate, simulations have shown these

expressions to be quite accurate for even the larger values of FBW near unity.

One property of the eigenvalues is worth emphasizing. Since

Trace (R) = Trace (Ro) , (25)

and since a20 8 30 a 40 0, then it must follow that
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sO 1 s1 + s2 + s3 + s4  (26)

As FBW increases, since s10 is independent of FBW, generally sI begins to

decrease and a2, a3 and a4 increase so that (26) is satisfied. Hence since

s4 is the smallest, the approximation to s4 in (23) is the most accurate.

We now show that, as contrasted to the eigenvalues of R (where R is the
=A =A

N x N correlation matrix defined at the antenna output ports), the eigenvalues

of R4 cannot be associated directly with output power relative to thermal

noise. To see this, we note by definition that
t
e . R - es fi t 49(27)

1 1-

whereas the output power relative to thermal noise, (I/N)i, when _t is applied

as a weight is given by

e t* R *e
(I/N)i t =4 i (28)

<A (w) - A(w)>

where A(w) is the delay line synthesized weight defined in Eq. (17). Thus

(I/N)i is given by, using Eq. (8),

%
(I/N)i ff e%~*~~ (29)

and RN is not a diagonal matrix. Consequently

( / i s* i (30)
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Hence although (I/N)i is proportional to s , a strict equality does not hold.

Consequently, we interpret the si relative to output interference/thermal noise

ratio in the loose sense indicated by Eq. (30).

B. Interpretation of the Eigenvectors and Eigenvalues

We have seen from Eq. (13) that the adapted weight vector which minimizes

the array output power is comprised of a sum of eigenvectors, suitably weighted.

It is instructive to examine the delay line synthesized weight and resultant
t

output power when each eigenvector, ei , i=l, ..., 4, in turn, is used as a

weight vector. The results give some insight into the physical significance

of the eigenvectors.

1. Tapped Output Weighted by 1 and 2

The first two eigenvalues, s1 and s2, can be interpreted similarly to the

first two eigenvalues of the correlation matrix R defined at the antenna

element outputs. That is, we note that sI  2 E0  represents the maximum

output power obtainable from the array. This output results from effective

weights AI(w) and A2(w) which cause the two weighted channels to add in phase

at the output. This results in a radiation pattern having a beam maximum

pointed toward the interference, which is relatively independent of frequency.

s 2 represents the familiar array dispersion phenomenon, which varies as FBW
2

compounded by dispersion introduced by the delay lines. It is zero for zero

bandwidth and increases as the square of the bandwidth. Applying e2 as a

weight vector in essence puts a "zero-bandwidth" null on the source and

generates a "monopulse" type radiation pattern. Examination of Al(w) and

A 2(w) using e2 as a weight at the tap outputs shows that A1 (w) and A2(w) are

only weakly dependent on w. Consequently, weighting characterized by S3 and

represent the most interesting cases relative to broadband nulling.

Furthermore, since al, s2 >>s3 s4, it is only s3 and 4 which contributed

significantly to the adapted weights. (Unless, of course, *0 - 0, in which

case e3 V V and e • V - 0 in (13); the solution for A then reduces to that of

frequency independent weighting at the array output for which s2 characterizes

the adapted array output power. This case is well understood.)

25
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2. Tapped Output Weighted by e3

Using the expression for 03 from Eq. (24) in Eq. (17) results in the

delay line synthesized weights A1 (w) and A2 (w) given by:

A* ()-1 e-J A Y[e-J 00 ( w - l ) -1 3a
A1 (w 2 l 3a

A* (w - -JPo ( w - l ) (3b
A 2 ()= [1 t-e ] (31b)

Equation (31) leads to an output voltage vs. frequency relationship, Vo(w),

given by

V(w) = A1 (w) E1 (w) + A2 (w) E2 (w)

j -j 0 (w-l) jy1 (w-l) j y2 (w-l) (32)1 J2 [e-J0 (  -l )  l e' - e ]

Hence when 03 is used as weight vector, the resultant output at w-l is zero

by virtue of the fact that each A k(w-l)=O, i.e., the array turns off at band

center, as opposed to cancelling the weighted interference between channels.

Thus it would be undesirable to use t3 to synthesize the weights since the

user signals as well as the interference signals are nulled. In order to

assure that the adapted solution, Eq. (17) employs s3 in the solution as

little as possible, we choose V so that V . e3 O which from Eq. (13) prevents

03 from contributing to the adapted weight. This condition will be satisfied

if we choose V of the form:

1* * * * J4'O *eJO

Va (v 1 , v 2 , V1 e '2 e (33)

where v1 and v2 are arbitrary complex constants. Physically this choice of

V corresponds to a quiescent weighting behind a specific element so that the

ouputs of each tap add in phase in the absence of interference.
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For example, consider a wavefront normally incident on the array. Two

possible choices of V can be used to turn on array element number one, if an

earth coverage quiescent radiation pattern is desired. One choice would be:

VT  [1,0,0,0], which is inconsistent with Eq. (33) above. For this choice of

V, an allowable adapted weight vector A which results in minimum output power

would be A - [l,O,-e j'0 01. This adapted weight turns off the array at band

center (i.e., AI(w=l)=O and A2 (w=l)=0). However, choosing V of the form V =

[1,0, + e J0,0] prevents this situation from occurring, since A can no longer

contain a component of The latter choice of V assures V *. = 0.

Additionally, this choice of V gives maximum output of the delay lines in the

quiescent mode of operation.

When 83 is applied as a weight, s governs the adapted output power of

the array. Note the dependence 53 - t0Ay 2FBW4 . As 0 - 0, then s3 - 0.

Thus, for 0 - 0, the only possible means of obtaining zero output power when

FBW 0 0 is for the array to turn itself off by adjusting the output of the

taps (the delay line is only a simple power divider in this limiting case) to

be 1800 out of phase with each other.

3. Tapped Output Weighted by 4

Examination of the eigenvalue a4 shows that it goes to zero when 0 = 0

and 0 = Ay, independent of FBW. The case s4 
= 0 when 00 = 0 is similar to

the situation discussed above. It leads to the trivial solution of zero

output power results from turning off the array. The case s4 = 0 when 0 a

Ay leads to the desired optimum result. That is, applying t as weight leads

to the optimum Al(W) and A2 (w) synthesized using two taps/element. These are

given by

ii , -JA Y -J¢0 (w-l)
A ( e I(1 - Y- (1 + / iAe 0

1 N/12V§+0 2 /Ay2

(34)

A M /A -Jo w-l
A2 (w) - 1 [(1 + /A - (- - 0 (-e

2 2\7 ~I 2 0 IY ~ ,0 ye
21,4i + 02/A2
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Comparing A1 (w) and A2 (w) in Eq. (34) to the optimum A%0 (w) and A0 2 (w) which

null the interference sources over the entire band yields exact comparison

when o - IAYI. Note that since Ay - k0D sin e, then the delay line synthe-

sized weighting is independent of the sign of e. Hence when Ay > 0 and *0 =

Ay, Eq. (34) reduces to

A*w 1 e-JAyw
A1 C(w) = - ~ -j

(35)

A2 (w) = +

and when Ay < 0 and 0 = jAyl, we obtain

A1 (w) 1 
- JAY e

(36)

A2 (w) = -- eJAy e+jAyw

Substituting either (35) or (36) into Eq. (16) yields perfect cancellation of

the interference sources over the entire band.

4. Simulations

The approximations to the si and ti defined in Eqs. (23) and (24) have

been verified by computer simulation using the exact solution outlined in

Section II for the N-element-N t tap topology. Figure 5 illustrates the general

variation of the eigenvalues as $0 is varied for parameter Ay.FBW = 1.9.

Increasing Ay-FBW leads to a much more pronounced resonance for the lowest

eigenvalue s4. Note that when *O = jAyl, the resultant output power - 0,

as s4 = 0 if t4 is applied as weights to the tapped delay line outputs. For

>> IAyI, s4 a 
FB  as predicted by Eq. (23).
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' Fig. 5. Elgenvalue characterization vs tap spacing for thetwo-element array using two taps/element. y FBW = 1.9.
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C. Algorithm Dependence/Performance Evaluation

According to the above discussion, for a specified positioning of the

interference source it is clear that optimum weighting results if 0 = LAYI
and the eigenvector t is applied as a weight to the tapped delay line outputs.

However, in practice, the position of the interference source is not apriori

known. Furthermore, it is desired that the weights be set autonomously

according to some prescribed algorithm. Both of these factors dictate that

perfect cancellation as governed bye4 for 00 = lAyl will not generally be

achieved. For our purposes, we have chosen to fix the delay line phase 0

according to some prescribed value (to be determined later), and set the weights

according to the Applebaum-Howells criterion specified by Eq. (6). Consequently

the adapted weights are proportional to the sum of all the eigenvectors, each

weighted according to i/(l+usi). Generally s s>>s2, s3 and s4, and we choose
t

V according to Eq. (33), so that 3 " V = 0. Then the adapted weights take

the form

A + 1 Ps 1 (e t. _V)e (37)2 2 V) £2 + 1 + P s 4 t

The solution governed by Eq. (37) is broadband only when 4 dominates. For

this to be true we require Vs2 >> 1 and 4 large enough so that * . V is not

small (note, from Eqs. (24) and (34), te4 . v12  0 /Ay) 2 , which approaches

zero as +0 0). In turn, the degree to which ps2 is much greater than unity

depends on the loop gain P (the value of which is more conveniently specified

in terms of the processor dynamic range, lSMAX) , and on the bandwidth FBW.

Consequently the performance of the delay line processor used in conjunction

with an Applebaum-Howells power inversion algorithm can be expected to be a

function of the variables pSA , 00/Ay and FBW. Since the eigenvalues them-

selves are a function of FBW by way of the parameter Ay.FBW, this latter

parameter offers a more universal characterization of the results.

, The above discussion illustrates that the cancellation C is a function

of the three parameters ps At 40/Ay and Ay.FBW, where C, defined as
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(IN a (38)
(I/N)b

is the ratio of the interference to thermal noise before and after nulling the

interference sources. In Eq. (38), (I/N)b and (I/N)a are given by

V t.R V A RA
(I/N)' - =4 (I/N) 14 A (39)

b Vt. a At.

It is possible to then evaluate Eq. (38) analytically using Eq. (37) for A.

However, the result is tedious and will not be carried out here. Rather we

illustrate in Figs. 6, 7 and 8 the dependence of C on these parameters as each

is varied for fixed values of the remaining ones. The results were obtained

from computer simulation, and are not dependent on the perturbation expansion

technique,

Figs. 6a and b illustrate the dependence of C as 0/My is varied for

A- * FBW - 1.0 and 4.0, respectively, with isMAX as a parameter. Note that, as

predicted from the behavior of e4 , when Ay • FBW is large, and SMAX >> 1, a

pronounced resonance in the dependence of C on 0f/A-y, indicating broadband

cancellation is achieved. The width of the resonance is dependent on the values

of Ay • FBW, as can be seen by comparing Figs. 6a and b. Note that for Ay * FBW

1, the resonance is quite broad, indicating that employing two taps/element

is adequate to give good cancellation over a wide range of interference-

source-locations, with fixed tapped spacing. However, as the aperture disper-
D

sion increases (either by increasing FBW or X sin 0), more than two taps/

element would be required to achieve deep, broadband cancellation over a wide

FOV.

Figs. 7 and 8 illustrate the same general behavior as Fig. 6, only

presented using differing values of the three parameters. Fig. 7 illustrates

the dependence of C vs *0/Ay as the parameter Ay " FBW changes, for a fixed

power level vsAX whereas Fig. 8 shows the dependence of C on Ps with
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00/Ay as a parameter and Ay FBW fixed. Note from Fig. 8 that a limit exists

where C becomes independent of power level. This limit is a fundamental limit

based on the array and delay-line geometry, on the bandwidth, and on the

interference source location. It could not be improved by use of another

algorithm. In this region, one is in essence applying the eigenvector 4 as

weights to the tap outputs. Fig. 8 illustrates that if the processor gain V

is set so that, for example, s MAX > 30-35 dB, then 40 dB cancellation is

possible on these larger sources over a broad range of 0 /Ay, corresponding

physically to a wide range of incidence angles. This indicates that, in

general, a set of fixed delay line parameters exist where significant cancel-

lation can be achieved compatible with a wide range of source scenarios.

Optimization of this choice of delay line parameters for differing source

scenarios is the objective of the following section.

D. Optimize 00 for a Predetermined FOV

The above results have indicated that if AY were known (i.e., the inci-

dent angle of arrival), then choosing 0 = lA Yl yields optimum wideband

cancellation for the two element array, using two taps/element (Nt > 2 will be

considered in the next section). Generally, however, the interference may be

located anywhere over the antenna FOV and the angle of arrival is not a priori

known. Hence it is of interest to optimize the choice of 0 for best average

cancellation over a range of Ay, say -Ay Y < A AY . Since C is a function
m m

of PSMAX as well as Ay - FBW and *0 /Ay, optimization on 0 is generally compli-

cated. However, in the limit SMAX >>1, then the adapted weight is approxi-

mately the eigenvector e4. In this case, substituting the expression for

into Eq. (28), the interference/thermal noise ratio after adaption can be

shown to be

l+ .n_2 y

(I/N) = s 0 (40)a 4 2 2%/Ay
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where we have approximated < A t(w).A(w) > f A tA evaluated at w-i, and s4 is
defined in Eq. (23). It is straightforward to average (I/N)a over -Ay m AY

SAYm and maximize this average with respect to 0' This result is given by

€0 = 0 "7 75Aym (41)

Hence best average cancellation assuming the interference sources located any-

where in the range -0me 0 < 0m results from choosing 0 - three quarters of
Aym . Note since C is independent of the sign of Ay, only a single delay line

is required to provide cancellation over both positive and negatives values

of 0.

Fig. 9 illustrates the resultant cancellation vs 0 (expressed in terms of

AY/Aym) using one and two taps/element as the incidence angle is varied over

the interval -0 < 0 < 0 . Ay'FBW is fixed at 6.0 and *0 is fixed at 0.775m m
Am. Only positive values of 0 are plotted since the results are symmetric
about 0=0. The choice of 0 used for two taps/element results in the best

average cancellation over the FOV. Worst case results occur when 0-.
m

Since the optimization criterion leading to 0=0.775 Aym was somewhat arbi-

trary, one might consider increasing 0 and minimizing the peak cancellation

over -0m 4 0 < m The resultant 0 would be greater than 0.775 9m

E. Extensions to Nt > 2

Depending on the parameter Aym FBW and the cancellation required for a

particular system, using only two taps/element might not yield adequate cancel--

lation. In this section we briefly consider using multiple taps/element for

the two-element array. It will become clear later that the general trends and

baseline parameters characterizing the two-element array are directly appli-

cable to the N-element array.

Consider, then, the performance of the two element array when Al(W) and

A2(w) are synthesized using Nt taps/element, and assume the tap spacing *c0
between taps is uniform. It is clear from Fig. (3) that increasing Nt leads

to a better approximation of AOk(w) by Ak(w). Of course, if 0= IAYI,
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there is no need for Nt < 2 as the optimim weights are synthesized exactly for

this case. For this reason we fix the delay line spacing 0 < Ay and vary9
0 over the FOV as defined above. For Ntf3 , we choose 0 0.775 Aym ) =

0.3875 Aym -- i.e., one half the optimum value of 0 for Nt-i2. This approxi-

mates a nearly uniform separation in 00 when viewed as Ay varies over the

field of view. This choice of 0 now yields perfect cancellation for two

positive incidence angles: 0 = 0.775 0  and 0 - 0.3875 0 . The cancellationm m

realized using Nt=3 as 0 varies over the field of view is illustrated in Fig.

9 for comparison with the case Nt=2 discussed above. Note the marked improve-

ment obtained. This improvement results from the additional freedom to cancel

the interference source exactly at a second positive angle of arrival over the

FOV, which reduces the average cancellation over the FOV considerably.

Because of our choice of 09 worst case cancellation again occurs at 0=0 m

Of course, by adjusting 0 appropriately the dispersion at 0=0m can be reduced,

at the cost of degraded performance towards the center of the FOV.

Noting that worst case cancellation for our choices of 00 occur when

0fim, the cancellation obtained for this angle of arrival can be used to

characterize quantitatively the cancellation dependence on the number of taps

as Ay m-FBW is varied. To this end, Fig. 10 illustrates cancellation as

AY -FBW is varied using Nt=l, 2 and 3 and the same choices for 00 as in

Fig. 9 (note, the curves for 3 and 6 elements will be discussed later). To

obtain the result illustrated for the two element array, the angle of arrival

0=0 m and aperture diameter D/A is fixed, and FBW is varied accordingly. The

utility of the parameter 2n- Dsin 0 "FBW in characterizing the delay line
X m

performance becomes clear from the results shown in the figure. For example,

assume the antenna/delay line processor is to be designed to achieve 30 dB

cancellation for interference sources located anywhere over the FOV. The

system requirements (i.e., signal-interference resolution required, system

bandwidth, etc.) determine the value of Ay m.FBW required to realize a given

performance specification. Clearly if AY .FBW 0.25, then frequency indep-

endent weights would suffice to realize the desired cancellation. If 0.25

Ay mFBW < 4, then a delay line using two taps/element should be employed;
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if 4 4 A-.FBW • 9, three taps/element should be used, and so forth. The

results for the three and six element arrays shown in Fig. 10 (to be consid-

ered later) indicate this characterization to be somewhat invariant to the

number of elements.

One final observation can be made concerning the delay line performance

results for Nt > 2; namely, the cancellation varies as a function of (A .

FBW) , where t is approximately given by 2(2N t-1). Thus for frequency indep-

endent weights C - (Ay FBW) 2; for delay lines using two taps/element, C c
6 m

(A~Y-FBW) , and so forth for N > 2. This dependence can also be developed
mI t

analytically using a bandwidth expansion for the correlation matrix similar to

that used in Eq. (26). Generally, for N-1 sources, R has N*N eigenvalues.
- t

The nulled output of the delay line processor is generally characterized by

the smallest eigenvalue, sN.N ' which it can be shown, for the two-element

array varies according to (A yt.FBW) 2(2Nt- 1 ) , leading to the above-mentioned

cancellation dependence. Knowledge of this variation with ATmY FBW is often
m

quite useful in scaling a known performance from one aperture size or band-

width to another as a function of the number of taps.
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IV. THE N-ELEMENT ARRAY

The results of the previous section yield quantitative estimates of the

performance characteristics of a two-element array using either a 1, 2 or 3

tapped delay line for each element. When the number of array elements exceeds

two, it is difficult to obtain analytical results, so that the majority of the

analysis for N > 2 is based on numerical simulations. When N exceeds two, many

configurations for array element positioning become possible, and it is intrac-

table to consider all possibilities. For this reason, we concentrate our

attention on the three classes of planar arrays illustrated in Fig. 11, each

consisting of only a relatively small number of elements. For reasons which

will become clear later, we classify the arrays according to their "angular

dispersiveness", i.e., according to how spread out the N elements are relative

to their angular distribution over a two dimensional planar aperture. For

example, the simplest configuration having the least angular spread for N-

elements distributed over a planar surface would be the equi-spaced linear

array of elements illustrated in Fig. lla. One might view such an array as

consisting of two "radial arms" emanating from a common origin, on which the

elements are positioned. The second configuration, having the next highest

degree of angular spread has three radial arms, equi-spaced 1200 in angular

separation, on which the array elements are positioned. This class of arrays,

which we refer to as triangular arrays, is illustrated in Fig. llb. Finally,

Fig. llc illustrates four other array types, each characterized by greater than

3 radial arms emanating from a common origin, where the elements are positioned

at the end-points of these arms. We classify these as "more complex arrays"

relative to the triangular and linear arrays. Carrying through this delinea-

tion to N elements, N >> 1, spread out uniformly over an aperture of fixed

diameter, would lead to N radial arms, of varying radii, characterizing the

planar array.

The basic idea behind this categorization of the array types considered is

as follows: Eq. (15) defines the optimum weighting for an arbitrary N-element

array. When the array elements are positioned according to simple geometrical
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relationships one would anticipate that the frequency variation of the optimum

weights would be simply related between element outputs. (See, for example,

Eq. (18) specifying A k(W) for the N-element linear array.) Consequently,

using a set of Nt taps equally spaced along a delay line would yield a better

approximation to this simpler optimum frequency variation (when N is con-
t

strained to be small) than it would for the more complex frequency variation

associated with the more complex arrays. Assuming this conjecture to be valid,

one would then require fewer taps per element for an N-element linear array

than for the more complex N-element arrays in order to achieve a desired

cancellation performance. Otherwise said, the number of taps required depends

more on the spatial complexity of the array rather than on the number of ele-

ments in the array. The following results offer support to the validity of

this conjecture, although we can by no means present a definitive proof of its

general applicability.

In the following, we consider first the simplest class of arrays -- the N-

element linear array -- followed by the analysis for the triangular and more

complex arrays.

A. The N-Element Linear Array

1. Three Elements: The three element linear array is an interesting

extension of the two-element array because it allows for the presence of two

interference sources located arbitrarily over the FOV, yet is still simple

* enough so that some analytical results can be obtained. One would anticipate

that the amplitude and phase frequency variation of the optimum weights for the

three element array becomes more complex when compared to that for the two-

element array (for which the optimum weights have only phase variation), and

hence a greater degree of synthesis capability is required to approximate this

- variation. Indeed, this turns out to be the case, but we shall see that the

cancellation performance of the array still depends only weakly on the number

* of elements.

Consider the three-element, equi-spaced array illustrated in Fig. 12, and

the two-source interference scenario defined by incidence angles 01 and 02 .
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ko~xk
In keeping with notation introduced in Section III, define 2 sn 1

and 7k2 = koDxk/2 sin E2, k=l, 2, or 3, where the xk are normalized nlement

positions (Xk2 < 1). If we choose x = -1, x2 
= 0 and x3 = 1 for element

locations, then "2,1 and Y2, 2 reduce to 0, and Y191= -Y 3 1, Y2, 1 = Y3, 2 .

This simplifies the analysis considerably. It is instructive to determine the

optimum weight variation defined by Eq. (15) for this array, and use it as a

basis for comparison to the tapped delay line synthesized weight. As before,

denote these optimum weights as AOk(w), k - 1, 2, 3. Then it can be shown that

j 'Y73 ,1 + Y3 , 2 )

A0 1 (w) = A0 3 (w) = -e 2 w

(42)

A0 2 (w) = 2 cos[ ( 3-2 w]

Observe that, as contrasted with the phase only variations of the optimum

weighting for the two-element array, the Afk(w) in (42) have both amplitude

and phase dependence on frequency. In fact, a careful examination of Eq. (42)

reveals that it is not generally possible to synthesize AOk(w) exactly

using a tapped delay line with a finite number of taps having equal tap-spacing.

Consequently, the restriction of equal tap-spacing necessarily yields non-

optimum results for some angles of arrival. However, due to its simplicity

and practical utility, it is still a useful constraint to impose on the delay

line design. Furthermore, it is certainly possible that when the array perfor-

mance is averaged over all possible sets of incidence angles allowable over

the FOV, uniform tap-spacing would still be the desired choice.

Consider now the synthesis of Eq. (42) using either one, two or three

taps per element for the three-element array. Assume two orthogonal inter-

ference sources located over the FOV, with one source positioned at maximum

scan angle 0 . A second orthogonal source will be orthogonal to the firstm
if it is positioned at 02 satisfying the relationship
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k0D
0 (sin m sin 02) = 2r/3 (43)

For small 0m (as for a satellite at geosynchronous altitude), we have 0m - 02

- 2/3 X/D. For the two sources so positioned, the resultant cancellation as

AYm • BBW is varied (actually, to obtain the numerical results, we fix D/X,

01, 02 and vary FBW) is plotted in Fig. 10, along with the results for the two

element array*. For lack of a better criterion, we have chosen tap-spacing 00

according to the optimum spacing developed for the two-element array. This

spacing tends to minimize the average cancellation when considered as a function

of all angles of incidence over the FOV. Thus,

0 f .775 Aym for Nt = 2

(44)

00 =3875 Aym for Nt =3

where Aym = 2ff D/X • sin 0 m. We have also chosen VsMAX >> 1 so as to get

at the fundamental nulling limitation of the array, independent of the

algorithm implemented in the processor. Notice the close similarity between

performance obtained for the two and three element array configurations as

the number of taps is varied. In Figs. 13a, 13b and 13c, we examine the

frequency dependence of the delay line synthesized weights Ak(w) vs the optimum

weights, AOk(w), of Eq. (42) using Aty m  FBW = 7.0. We utilize the polar repre-

sentation of the weights introduced in Section II. Since each weight can be

multiplied by an arbitrary complex function of frequency without changing the

results, the results in Fig. 13 are normalized to A1 (w) for each respective

*Note: These results, and all of the following simulations assume an earth
coverage quiescent radiation pattern. Any other steering vector would
increase or decrease the cancellation achieved by approximately the average
quiescent gain to the interference sources relative to earth coverage gain.
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komx
In keeping with notation introduced in Section III, define i Yk O -sin 01

and Yk,2 = koDXk/2 sin 02, k=l, 2, or 3, where the xk are normalized element

positions (xk2 < 1). If we choose x, = -l, x2 = 0 and x3 - 1 for element

locations, then Y2,1 and reduce to 0, and 1,1 = -y 3 , 2 = -3

This simplifies the analysis considerably. It is instructive to determine the

optimum weight variation defined by Eq. (15) for this array, and use it as a

basis for comparison to the tapped delay line synthesized weight. As before,

denote these optimum weights as AOk(w), k = 1, 2, 3. Then it can be shown that

"3 2 w

A0 1 (w) = A03(w) = -)
• (42)

A 2 (w) = 2 cos 3,2 w3,1  w

Observe that, as contrasted with the phase only variations of the optimum

weighting for the two-element array, the Aok(w) in (42) have both amplitude

and phase dependence on frequency. In fact, a careful examination of Eq. (42)

reveals that it is not generally possible to synthesize AOk(w) exactly

using a tapped delay line with a finite number of taps having equal tap-spacing.

Consequently, the restriction of equal tap-spacing necessarily yields non-

optimum results for some angles of arrival. However, due to its simplicity

and practical utility, it is still a useful constraint to impose on the delay

line design. Furthermore, it is certainly possible that when the array perfor-

mance is averaged over all possible sets of incidence angles allowable over

the FOV, uniform tap-spacing would still be the desired choice.

Consider now the synthesis of Eq. (42) using either one, two or three

taps per element for the three-element array. Assume two orthogonal inter-

ference sources located over the FOV, with one source positioned at maximum

scan angle 0 . A second orthogonal source will be orthogonal to the firstm
if it is positioned at 02 satisfying the relationship
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Fig. 13 (Continued). Optimum weighting vs delay line synthesized
weighting for the three-element linear array: (c) Three taps/ele-
ment.
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delay line case, and to A01 (w) for the optimum weight variation. This allows

for comparison on a one-one basis. Note, as obtained from Eq. (42), Aol(w)

and A0 2 (w) illustrated in Fig. 13a are constant amplitude weights and A0 3(w)

has a cosine variation with frequency with a peak amplitude of nearly 6 dB.

The value of the AOk(w) at w = 1 is indicated in the figure. Figs. 13b and 13c

illustrate the delay line synthesized approximation to the AOk(w) using 2 and

3 taps/element, respectively. At band center, (w = 1), all the weights compare

closely. As w increases from band center, the delay line synthesized weights

begin to deviate from the optimum weights, although A 2 (w) and A3 (w) have

constant amplitude. The approximation to AOk(w) is worst at the edge of band,

and it is here that the improvement realized in using 3 taps/element over 2

taps/element can be seen. This is particularly true of A 3 (w) for N t = 2,

where the approximation to A0 3 (w) is very poor at the edge of the nulling

band. For Nt = 3, A3(w) closely approximates AoM. In order to illustrate
A3( A03 w)

how these deviations in Ak(w) from AOk(w) affect the cancellation realized as

a function of frequency, we illustrate in Figs. 14a and 14b the cancellation

vs frequency over the nulling band obtained in the direction of each of the

two sources. For N t = 1, hardly any nulling results, whereas the improvement

in cancellation realized in increasing Nt to either 2 or 3 is quite significant.

Observe the cancellation is worst at the band edges consistent with the devia-

tion of Ak(w) from AOk (w) in these regions. The average cancellation over the

nulling band can be obtained using Fig. 10 for AY mFBW = 7, from which we
m

obtain C - -20 dB using Nt = 2 and C -- 40 dB using Nt = 3. Clearly these

values are consistent with the cancellation vs frequency results illustrated

in Fig. 14.

2. The Six-Element Linear Array: In order to obtain a feel for the

dependence of the number of taps on the number of elements, consider the

six-element array illustrated in Fig. Ila. For this array, five orthogonally

located interference sources can be positioned nearly uniformly over the FOV,

similar to the positioning illustrated shown in the insert of Fig. 1. As

before, we consider the cases Nt - 1, 2 or 3 using 0 . .775 AY for Nt 
= 2

t m
and = 0.3875 AY for Nt = 3. The resultant cancellation performance when

0 M
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plotted vs A Y .FBW is illustrated in Fig. 10, for comparisor with the two and

three element array results. The general similarity of the results for all

these arrays when Nt - 2 and Nt - 3 indicates that the performance achieved

is only weakly dependent on the number of elements. Regions where one, two

or three taps should be used to obtain a desired cancellation performance are

readily identifiable. Note also the general applicability of the cancellation
2

estimates obtained from the two-element array which predict C (A Y'FBW) for
6 

10
N = 1, C -(y.FBW) for Nt = 2 and C - (AY -FBW) for N 3. Hence, we
t 1,C- m tm t
conclude that for the linear, equi-spaced array the key parameters governing

the array performance are D/X, sin 0 and the fractional bandwidth. To first
m

order these parameters can be used to estimate the number of taps required in

q order to achieve a desired wideband cancellation performance.

B. Triangular Arrays

The triangular arrays illustrated in Fig. llb represent the simplest

point of departure in considering the transition from linear arrays to planar

arrays. In treating even simple planar arrays, the analysis becomes complicated

due to the necessary inclusion of a two-dimensional FOV. However, the general

concept of orthogonally positioned interference sources and their complete use

of an array degree of freedom remains valid. Consequently, the general phil-

osophy of positioning N-1 orthogonal (or nearly so) sources and examining the

cancellation performance of the array relative to these sources as the nulling

bandwidth increases can still be used to evaluate the array performance. Since

aperture frequency dispersion is worse for sources located toward the edge of

the FOV than for those near the center (see Fig. 1, cancellation without
2

frequency compensation degrades as (Ay .FBW)2), we consistently position N-I

sources at these locations whenever possible. It should be emphasized, however,

that when D/A is large enough so that grating lobes occur over the FOV, the set

of N-i orthogonal source locations are not unique and cancellation performance

is dependent on the set of source locations chosen. Consequently, locations

chosen in the following analysis yield results which are only representative

of the bandwidth characteristics of the array, and are not necessarily worst

case.
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With these restrictions in mind, consider the performance of the 4-element

triangular array illustrated in Fig. llb, subjected to three interference

sources orthogonally located over the FOV. The cancellation vs AY mFBW is

illustrated in Fig. 15 for two different source location scenarios, illustrated

in the insert in the figure, using values of Nt = 1, 2 and 3. The performance

of the array vs the two scenarios is somewhat different for each case. However,

even the poorest performance yields significant cancellation over the nulling

band as the number of taps increases. Perhaps most significant is that using

two taps per element yields only about 20-30 dB improvement over frequency

independent weighting, whereas using 3 taps per element results in better than

50 dB (theoretical) improvement over that obtained using frequency independent

weighting. Furthermore, the large cancellation levels realized tend to justify

the choice of 0 used, which was extrapolated without justification from the

two-element array analysis.

In order to investigate the dependence of cancellation on the number of

elements, we fix the array symmetry (i.e., 3 radial arms specifying the element

locations) and increase the number of elements from four to seven. The cancel-

lation vs AY 'FBW for this array Is illustrated in Fig. 16 for the 6-orthogonal

source scenario indicated in the figure. Clearly, the cancellation realized

as a function of AY.FBW is not markedly different from that for the four-

element triangular array, again indicating only a weak dependence of the delay

line synthesis of AOk(w) on the number of elements. In fact, recognizing that

the triangular array is comprised of three linear arrays rotated 1200, it

should not be surprising that the results are not markedly different from the

linear array. This supports the conjecture that the number of taps required

in order to achieve very high cancellation levels is most strongly dependent

on the angular dispersiveness of the array, i.e., Nt required is proportional

to the number of radial arms characterizing the array.

C. More Complex Arrays

Consider now the class of arrays illustrated in Fig. llc, i.e., those

requiring more than three angularly placed radial arms to specify their element
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locations. In order to illustrate the effect of radial element positioning on

the cancellation performance, consider a simple modification to the 7-element

triangular array treated above. If the inner triad of array elements of the

7-element triangular array of Fig. llb is rotated 600, the "rotated-double

triangle" array illustrated in Fig. llc results. This simple rotation of

elements results in an array configuration characterized by 6 equi-spaced

radial arms. The resultant cancellation vs Ay.FBW performance relative to

nulling a six-interference source scenario is illustrated in Fig. 17 using a

one, two or three tapped delay line. The six-source scenario used to evaluate

the array performance is a nearly-mutually orthogonal scenario (8 dB spread

between the first six eigenvalues), chosen because a set of six mutually

orthogonal sources for this array configuration does not appear to exist.

Comparing Fig. 17 to Fig. 16, we conclude that the simple notational change

from three to six radial elements drastically alters the array nulling band-

width performance. This is because the more spatially dispersive the array,

the more difficult it is for a fixed number of taps on a delay line to synthe-

size the optimum weight variation with frequency. To see this, we illustrate

in Figs. 18 and 19 the optimum synthesized tapped delay line weights variation

with frequency for the scenario considered using the simple double triangle

configuration of Fig. llb and the rotated double triangle configuration of Fig.

llc, respectively, and a value of AY 'FBW = 3.45. For each figure, the polar

plot labeled "a" illustrates the optimum variation with frequency and the plots

labeled "b" or "c" illustrate the tapped delay line synthesized weights using

two and three taps/element, respectively. Note the rather simple amplitude and

phase variation of the optimum weights with frequency for the simple double

triangle array, as compared to the rather complex variation obtained for the

rotated double triangle. For the simple double triangle array, the resultant

optimum and synthesized weights lie on the real axis for the scenario chosen.

Because of this, it is difficult to assess from the polar plot quantitative

differences between the optimum weights and the results for Nt 
f 2 and Nt - 3,

as the data is compressed onto a line. However, a more detailed examination of

this weight frequency variation shows a nearly monotonic variation with
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frequency results for the simple double triangle array, as opposed to that

corresponding to the rotated double triangle, for which some rather abrupt

inflection points occur for the phase variation with frequency. As can be seen

in Figs. 19b and c, using only two or three taps is not sufficient to precisely

synthesize the rapid phase variation of the optimum weights of Fig. 19a,

although the approximation to the optimum weights clearly improves as the

number of taps increases. One might also compare the optimum weight variation

with frequency for these two triangular array configurations to that of Fig. 13

for the three-element linear array, where the smooth behavior of the phase

variation is again evident.

In order to pursue this point further, consider another 7-element array

configuration characterized by six radial arms -- the hexagonal array illus-

trated in Fig. llc. Six orthogonal source locations for this array can readily

be determined and are illustrated in the insert of Fig. 20. The cancellation

performance vs the parameter Ay -FBW is also plotted in this figure for a delay
m

line employing either one, two or three taps/element. The tap spacing is, as

before, chosen to be 0 . .775 Aym for Nt = 2 and .3875 Aym for N = 3. We note

the relatively narrowband nulling performance of this array is slightly worse

than for the 7-element rotated double triangle array. As one might anticipate

from the preceding results, the optimum weight variation with freqeeey also
/

becomes rapidly varying as Aym'FBW increases. This is illustrated in Fig. 21,

where we plot this weight variation vs frequency for AY -FBW - 2.19. The

optimum weight variation with frequency is plotted in Fig. 21a, along with the

synthesized weight variation with frequency in Figs. 21b and c, respectively.

Clearly, the same general comments pertaining to the rotated double triangle

relative to Fig. 19 can be made for the hexagonal array. The inflection

points present in the optimum weights phase variation occurs both near band-

center and at the band edges.

For completeness, we briefly consider the two remaining array configura-

tions of Fig. lc: The square array and the pentagonal array, characterized by

four and five radial arms, respectively. The cancellation performance for
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these two arrays vs Af-FBW is illustrated in Figs. 22 and 23, respectively.

The nearly orthogonal source locations used in the simulation are illustrated

in the insert of each figure. For comparison, we have presented results for

two different orthogonal source scenarios for the 5-element square array, and

included results using 4 taps/element for both arrays. When Nt - 4, we choose

0 txy/4. The results indicate performance similar to the other array types

of Fig. 11c. Observe that notable improvement is obtained when 4 taps/element

are used, and the results become comparable to the more simple linear and tri-

angular arrays using two delay lines/element.

Finally, in order to bring together the results for all of the array types

in Fig. 11, we examine the composite performance of the arrays obtained using

a fixed number of taps/element. To accomplish this, we illustrate in Fig. 24a

the collective performance of each array type vs A- m-FBW using frequency

independent weights. Also sketched in the figure is the simple "rule of thumb"

discussed in Section I (Fig. 1) used to assess the need for employing tapped

delay lines. Note this rule of thumb curve serves as a useful upper bound on

the composite set of cancellation results for the general class of arrays

considered. Observe that for all of the array configurations, C - (Ay.FBW)2

-- i.e., for frequency independent weighting, array bandwidth performance

degrades as the square of the parameter 2w-1 sin 0 FBW. This is a useful
X m

relationship to keep in mind in assessing array performance.

Fig. 24b illustrates the collective improvement of the 9 array types

considered using Nt - 2. Observe a much larger spread in cancellation perfor-

mance is obtained, indicating the improvement realized is somewhat sensitive to

array configuration. However, the spread is narrow enough to enable one to

estimate useful bounds on the anticipated improvement realized using Nt - 2 as

a function of A-Y FBW. These bounds can be tabulated as a function of the

desired cancellation level for a given number of taps. (Recall, all the above

results were obtained assuming an earth coverage quiescent steering vector.

Any other steering vector would increase or decrease the cancellation achieved

by approximately the average quiescent gain to the interference sources rela-

tive to earth coverage.) The result is illustrated in Table I. Fig. 24c
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TABLE 1

COMPOSITE CANCELLATION BOUNDS vs N AND X - Ay *FBW FOR THE NINE ARRAY
t m

CONFIGURATIONS OF FIG. 11 ASSUMING AN EARTH COVERAGE QUIESCENT

RADIATION PATTERN

CANCELLATION (dB) NUMBER OF TAPS BOUND ON Ay -FBW
m

Nt = 1 X <1.75

-20 Nt = 2 2.5 <X <7.0

Nt = 3 5 < X < 10

Nt = 1 X<0.6

-30 NE = 2 1.5 < X < 4.75

Nt = 3 3.5< X <5.0

Nt = 1 X<0.1

-40 Nt = 2 1.2 < X < 3.5

Nt = 3 2.3 <X <3.5

Nt  1 ---

-50 Nt = 2 0.75 < X <2.2

Nt = 3 1.5 <X <2.75
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illustrates the composite cancellation performance using Nt  3. Observe that

those classes of arrays categorized in Fig. 11 yield much different performance

characteristics, offering support to the conjecture relating cancellation

dependence on the number of taps to the spatial distributions of elements over

the aperture. Results for Nt M 3 tabulated in Table 1 use the simulation data

for the more complex arrays, i.e., the upper bound of Fig. 24c, which serves as

a worst case estimate. Although the bounds are somewhat loose, they should

prove useful in estimating a given array performance based on the given D/X,

field of view, and operating bandwidth.
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V. DISCUSSIONS AND CONCLUSIONS

The results of Section IV indicate the cancellation performance of various

types of planar arrays. It was determined that the cancellation potential of

a particular array could be considered a function of the parameter AYm-FBW.

Some physical insight into the interpretation of this parameter can be obtained

in a qualitative manner by consideration of the time delays associated with the

delay lines and the array. The maximum delay between the times of arrival of

a plane wave at any pair of elements in an array of diameter D is given by

D sinOm (45)
TMAX =~C

where c is the velocity of light. A perfect broadband weight would be capable

of compensating for any time-delay from 0 to TMAX (see Eq. (18)). The choice

of a total delay line length which gives a time delay of 775 rMAX permits

one, by appropriate weighting of the taps along the line, to approximate

optimum weighting over this range relative to an arbitrary delay over the

range 0 5 T : TMAX' Simulations have shown the nulling performance to be

not too sensitive to the value of total delay line length. For the cgse of

3 taps, we have somewhat arbitrarily chosen the tap spacing to be *775 2MAX
2

= .3875 TMAX* For a larger number of taps, however, the appropriate spacing

would appear to be TMAX/Nt, Nt being the number of taps. The choice of

uniform tap spacing, while somewhat arbitrary, appears reasonable, given a

fixed maximum length for the delay line. Such a uniform distribution of taps

should permit most close approximation to any desired delay between 0 and

TMAX*

The number of taps required to achieve a certain cancellation ratio

depends on TMAX and on the fractional bandwidth. This dependence can be

clarified by introducing the concept of a characteristic time, T0, defined

as the inverse of the actual bandwidth in hertz; i.e.,

7
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B1 (46)z0 fiBW

or, in terms of the fractional bandwidth FBW,

= cFBW (47)

The parameter T0 may be thought of, for example, as the width of the envelope

of an RF pulse, the major frequency components of which lie within the spectrum

BW. It is clear that in order for cancellation of such a pulsed waveform

to occur, the pulse must appear simultaneously at the output of taps on more

than one array element. For a two-element array, for example, the number

of taps along a delay line of total length TH must be much greater than
'TMAX

To in order to be able to find such a coincidence of pulses at the array

output for any angle of arrival up to 6
m

(Using (45) and (47)), the parameter TMAX/T0 can be expressed as

tMAX
27r T =Y- FBW (48)

Eq. (48), when interpreted relative to TMAX/Top offers insight into the

physical significance of the parameter Ay - FBW used in plotting many of the

curves in the report. For example, if only a single tap is used, it is

reasonable to require TA/T < .1, or A-m FBW < .63, and the curves in

the report show poor cancellation for Ay * FBW >.63.
m

Other points that the authors wish to reiterate are that our analysis

always assumes a maximally stressed array, i.e., an N-element array is always

evaluated relative to N-i orthogonal sources distributed over the FOV. This

assumes that the array dedicates only a single spatial degree of freedom per

source to be nulled.

A different approach to obtaining the capability of nulling N-i sources

over a wide band might be to use M >> N elements distributed over the same

diameter D, but no tapped delay lines, so that many degrees of freedom could
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be devoted to wideband nulling of each source. The disadvantage of this

approach is that the nulls obtained are broader in angle, so that the nulling

resolution is degraded, an effect that does not occur with the tapped delay-

line approach. It also requires the physical deployment of many more elements

than would be necessary with tapped delay lines. The tapped-delay line permits

one to approximate the ideal narrowband weight at each frequency, and thus to

maintain a high-resolution null (consistent with the resolving power of the

antenna aperture) in a desired direction.

We have also shown that the number of taps required per array element

depends not only on the parameter Am FBW, but also on the geometry or shape
m

of the array, more taps being required for more complex shapes. The number

of taps is only weakly dependent on the number of elements that are placed

inside the diameter D.

The analysis has been carried out using the Applebaum-Howells algorithm

to obtain optimum tap weighting, but care has been taken to make the results

of Section IV independent of the particular algorithm used. This has been

done by choosing a large enough value of p, the adaptive processor loop gain,

and by choosing an appropriate quiescent weight vector, one which is guaranteed

not to be orthogonal to the desired nulling weight vector.

In Table I in the last section of the report, we attempted to summarize

the bandwidths achievable for 1, 2 and 3 taps at different cancellation levels.

The table lists a range of values because of the above mentioned effect of

dependence of the results on the shape of the array. This table can be used

as a preliminary design guide, before more detailed analysis is carried out.
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APPENDIX A

AN UPPER BOUND ON THE CANCELLATION ACHIEVABLE
USING FREQUENCY INDEPENDENT WEIGHTING

In this appendix, we develop the results leading up to Fig. 1 of the text,

which serves as a qualitative estimate of the bandwidth potential of the N-

element array antenna using frequency independent weights. Assume the presence

of N-i orthogonally located sources. Then Eq. (4) characterizing E can be

expanded in the form

R = R + AR = R + + AR + ... + A-- (Al)
- =0 =1,0 + =N-i,o =1

where R denotes the zero-bandwidth correlation matrix of the jth source and
=j 90

AR. the perturbation to R due to non-zero bandwidth. The Nth eigenvalue

sN is given by

t t
e *R e e • AR e

s = Max =Max (A2)
e e e e e *e

where the maximization 'n (A2) is performed over all e orthogonal to the N-1

eigenvectors of R0. Using a simple inequality, it follows that s can be

bounded by

N-1 t

SN < Max et = (A3)

e e e

where no restriction is imposed on e. Hence the maximum eigenvalue of each

AR cankbb estimated, and N bounded by their sum. Consider AR, and define
=j k0 GN

Yk,l = -_ sinO1 (xkcos l + yksin I). Then using Eq. (19) of the text, it

follows that

E0  2 2 -(\,1 -

(AR = - 4 FBW2(\' ,2(q- e (A4)
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Asl, corresponding to the maximum eigenvalue of AR1 , can be estimated by a

simple bound on the elements of AR1 . From Reference 4, it can be shown that

2 N N

AsI  - FBW2  (-- sinel)2 MAX (x , - x e) eke

k-l q=l

(A5)

2 N N
24 FBW2 (- sin ) 2 MAX  

XkXq) 2

k=l q-l

41

If we assume an N-element, equi-spaced linear array geometry, then the maximum

sum in (A5) can be determined. We obtain

MAX I F(x Xq)2 2 N(2N-1 ) (A6)MA (k - q 3 N-1

k q

Hence

2
E0 2 A 2 2 N(2N-I)

Asl -24 FBW (-i sinel) 3 N-I

Then it follows from (A3) that sN < As I + ... + As N , so that
2

E0 1 N(2N-l) D 2 2 2
SN 24 6 N-1 (27r FBW) [sin0 + ... +sin0

(A8)

Assume an earth coverage quiescent radiation pattern. The the quiescent

interference-thermal noise ratio is simple (N-I)GeRj if all N-1 interference

sources are of equal power level. The adapted interference-thermal noise

ratio is simply sN. Hence, the cancellation C is given by

C s /(N-I)G R. (A9)
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Using Eq. (A8) in (A9) results in an upper bound on the achievable cancellation:

C < 1 N •(2N-1) (27 * FBW)2 . [sin 2 1 + ... + sin2N216r 2 (N-i)2 X 1 - (A10)

where the 0., j = 1,2, ..., N-i, denote the positions of N-1 orthogonally

positioned sources. Although the bound in Eq. (AO) is not generally tight,

it serves as a worst case estimate of the bandwidth potential of the array.

If the array diameter D/X is large, so that grating lobes appear over the

antenna FOV, then there are many angles 0. which satisfy the orthogonality

.1 condition defined by Eq. (2). Since aperture frequency dispersion is worse

for sources positioned toward the edge of the FOV, we can obtain a good

estimate of the worst case cancellation by choosing the 0.'s uniformly distri-J
buted over the FOV, with one at the edge and the others at orthogonally

located positions. In this case, Eq. (AlO) can be expressed in the form

D sin201 sin2e-

C < 1 N(2N-l) (2. D sinO • FBW)2 [i + + ... + N-2
2 2 FEW m 2 2

16n (N-i) sin20 sin20m m

(All)

If no grating lobes occur over the FOV, then the orthogonal positions e1, ...

0N-1 are uniquely specified; in this case Eq. (All) will be weakly dependent

on N. Fig. 1 illustrates the bound of Eq. (All) for various values of N when

the N-i orthogonal source locations are assumed uniformly distributed over the

FOV. The tightness of the bound in (All) can be seen by comparison with simu-

lations of the nine array configurations summarized in Fig. 24a.

I
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APPENDIX B

EIGENVALUE AND EIGENVECTOR ANALYSIS FOR THE TWO-ELEMENT ARRAY
HAVING TWO TAPS/ELEENT

In this Appendix, we outline the perturbation analysis leading up to

Eqs. (23) and (24) characterizing the two-element array having two taps/

element. The s and , i = 1, ..., 4 defined by Eq. (22) of the text can

be estimated from s and ,0' which are the eigenvalues and elgenvectors

of RO , respectively. However, determining e20' £3,0 and e,0 is complicated

by the fact that the eigenvalue of R are degenerate; i.e., slO f 2E and
BO0, 0

s ffi = 0. Consequently, the corresponding eigenvectors of these
2,0 3,0 4,0

degenerate eigenvalues are not unique. To circumvent this problem, we elim-

inate the ambiguity in the following manner. Define u and u

to be a given orthonormal set of eigenvectors of R0 . The desired set of eigen-
vectors {ei} can be expressed in terms of the 0 with the relating

constants evaluated using Eq. (22a) of the text. Clearly, we must have Ul,0

eO" e0 is chosen so that s = MAX{e AR * _e where2 is
-0 - -2, 0 ~2 -2,'0 .R*-2,0' -2, 0

normalized to unity and e2, 0 ' el,0 = 0. Given £2,0' £3,0 and 4,0 can be

determined using a similar procedure. Once e and e are determined, then
-3,0 -=4,0

the ei can be estimated from Eq. (22b). To this end, the eigenvector £2,0 is

expanded in the form

t2,0 =u +1'01k u k u(Bl)
=2,0 3 -3,0 + 4 M4,0

and the complex constants k3 and k are chosen so as to maximize the expression
3 4

t
e2,0 AR -2,0'MAX 0 (B2)

3 4 -t2,0 " 2,0

eS2,0 determined in this manner then yields directly the estimate s2 for the

, second elgenvalue of R given by Eq. (27a). Once e2 0 is determined, £3,0 and

0 can be determined from the linear combination

.. -- 7
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e3 d u + d u + u-3,0 2 -2,0 3 -3,0 4 M4,0

(B3)

-4,0 -2 u2,0 + '3 -3,0 + '4 4,0

where cl, c2 9 c3 and dig d2, d3 are the complex constants. cl, c2, c39 dig

d2 and d3 are not independent but must satisfy the orthonormal conditions

tt t0
-2,0 -S3,0 -t3,0 "24,0 -4,0 -t2,0

(B4)

t t
-2,0 -t2,0 -t3,0 -t3,0 -t4,0 -24,0

Eq. (B4) leads to the set of linear constraints

c2 + k3 c3 + k4 c4 = 0

d + k* d + k* d = 0 (B5)2 3 3 4 4

c2 d2 + c3 d3 + c 4 d4 a 0

This set of equations can be simplified by arbitrarily choosing d2 f 0, so

that e3,0 is dependent only on a3, 0 and R4,0 (that this is possible was

determined in retrospect by considering d2 0 0, and is due to our choice of

the _%,O). After some manipulation, the expressions (B3) for e3,0 and .,0

can be written in terms of 42,0' R3,0 and i,0 in the form

e-i'2 [eiYT2 "1 - elu. ] (B6)

-t0 - 4,0 V 3,006

=- Y2 e J 2 R4 + e _ 0u (B7)',0 - e2,0-3,0 -N -!y 2,0
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where A = 7 Y2. Eqs. (B6) and (B7) now form an orthonormal set of elgen-

vectors irom which s3 , s4 can be determined. It remains to choose the basis

set {R, 01. For our choice of basis functions, we choose

t 1 -J Y1 -j Y2 J~o -J Y1 JOO -J Y2]
Ul 0 = j [e ,e , e e , e e

J Y  +jAy +J o J 0o -JAy
2,0 2 [1, -e ,e , -e e ]

J¢O (B8)

S1 = [, 0, -e , 0]
• -R3,0

t 1 [0, 1,0, -e

4'0

Then Eq. (B6) for e3, 0 used in (27a) yields s3 and Eq. (B7) for e4,0 gives the

estimate of s Although this is not immediately clear, it can be shown by

direct maximization of AR of a linear combination e = e a , where a

is the complex maximization parameter. Having determined e-l,0' t2,0' e3,0

ande 4,0 and Sl, s2, s3 and s4, Eq. (27b) can be used to determine e., e2,

and 4. However, due to the choice of el0, e2 3 ,0tand e 0' the sum

in (22b) is zero since terms i-j are omitted. That is, eJ, 0  6 AR • e,0 = 0

when J # i, which is valid for all terms of AR up to order FBW . Consequently,

we have

-el1 -1,0' -2 -S2,0' e3 ; ,3,0' $4 e.4,0 (B9)

where the a 0 are determined as above by substituting (B8) into (B7). The

results lead to Eq. (24) of the text.

,.'
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